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Abstract— We propose a new vowel representation using 

Flood Fill processing applied to time frequency image MFCC 

(FFMFCC). We use Allen time algebra to demonstrate that 

simple binary features from FFMFCC are enough to represent 

vowels. The results, multispeaker broadcast news, show that 

these binary features need only 1,2kb/s to give similar vowel 

classification than usual MFCC (76kb/s), yielding to a strong 

rate coding compression (factor compression of 60). Our 

approach yields to a new parsimonious representation of 

speech. We discuss on its extension to other phoneme coding 

and application to content based information retrieval. 

 
Index Terms— Cepstral MFCC Image processing, time-

frequency, Quantization, Allen Temporal Algebra, Automatic 

Speech Recognition.  

 

I. INTRODUCTION 

ost of the acoustic speech analysis systems are 

based on short-term float spectral features. The 

most popular one is the Mel Frequency Cepstrum 

Coefficients (MFCC) [15]. Moreover, from a phonological 

point of view, speech includes strong singularities, as 

depicted in the quantal speech theory [14]. These 

singularities may not be well represented in noisy conditions 

by a float representation. We then propose that a speech 

quantization framework may be efficient to generate lighter 

automatic speech recognizers and a better noise robustness.  

In [3], we proposed a phoneme coding method using 

Allen algebra
1
 on a very simple thresholded spectrum 

image. This method gives an average vowel error rate, but 

processes only 10% of the vowels, mainly because of the 

difficulty to set accurate threshold. This difficult issue was 

arised in spectrogram images processing [5], and more 
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1
 N.B.: Allen  J.B works are related to human speech perception and 

 subband speech analysis, while ALLEN J.F defined a generic time interval 

 algebra. 

specifically into speech spectrum [6]. However, these 

papers are not giving solution for automatic speech 

recognition. In [1] we developed this concept on the 

subbands voicing level activities. We built an empirical 

spectrum image processing method that was not matching 

the correct phoneme dynamics, yielding to poor results. 

Here we propose to build the Time Frequency patterns by 

a systematic and simple recursive algorithm [12, 13], 

applied on spectrum image of MFCC coefficients. The 

feature we propose in this paper for speech analysis lies on a 

basic binarisation of MFCC Time-Frequency (TF), to reveal 

informative structures speech singularities. Our approach 

considers the TF plane in a global manner, where each 

speech spectral pattern is not characterized by an iso-energy 

level but by a local TF coherency. 

The validation experiments are conducted on reference 

French independent speaker broadcast news called ESTER
2
 

[8], with a training set of 10 hours, a validation and test set 

of one hour.   

The FloodFill (FF) is presented in next section. The 

section 3 presents our MFCC binarization process, using the 

(FF) image processing, yielding to what we call FFMFCC 

parameters. Section 4 describes the Allen time algebra 

coding on this FFMFCC parameters. The first, vowel 

classifications based on this coding defines the optimal 

FFMFCC parameters: a window size of 16ms for a simple 

binary representation. This Boolean representation is then 

successfully experimented in section 5, showing similar 

results than MFCC, but with a much lower rate coding. The 

last section concludes and gives perspectives of this 

promising new approach for speech content information 

retrieval. 

II. TOWARDS FLOODFILL SPECTRUM SEGMENTATION 

 

We propose in this paper to apply the image pattern 

extraction algorithm “Flood-Fill” [7] (FF) to the speech 

spectrogram image before any pattern extraction process.  

FF is this simple image process:  

--Two cells are defined as connected, if both exceed 

the threshold defined. 

 --FF is performed recursively on all cells connected to 

the interest element (e.g. the initial cell in each iteration, 
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called ”seed” S0).   

Thus FF has 2 parameters: a threshold Th and the initial 

cell S0. 

We compute FF into each spectrum image of Local 

Binary Window (LBW) of length optimized on a 

development set (varying from 16ms to 512ms, half 

shifted). 

We think that FF can effectively eliminate the noise 

existing in spectrum data, revealing clearly the voicing 

patterns. The application of the recursive FF algorithm can 

solve the problem of a local thresholding such as the 

algorithm finds recursively all segments that are connected 

to a start node seed S0, in the eight directions, by a path 

along which all values exceeding the threshold (Fig.1).  

In [1] we apply FF to Time Frequency Image of voicing 

levels (=Harmonic to Noisy Ration [1]). Then, FF allows 

extracting the patterns (Fig 2 (c, d)) with few parameters. 

Anyway, the results of recognition are weak with FloodFill 

on voicing data (see section 5-A). 

 Thus we propose to change the spectrum image of the 

voicing levels: we will apply FF on the spectrum image of 

Mel Frequency Cepstrum Coefficients (MFCC) . 

III. FLOOD-FILLED MFCC  

The Mel Frequency Cepstrum Coefficients are one of the 

most popular speech front ends. It is computed by 

windowed Fast Fourier Transform in 12 Mel-Frequency 

critical subbands, defined after physcoacoustical studies 

[15]. These 12 dimensions float vector is concatenated with 

the log-energy.  

The usual MFCC feature includes the delta and delta-

delta of the 12 MFCC statics coefficients, yielding to 39 

coefficients. In this paper the MFCC are computed with the 

toolkit ”SPRO” from IRISA [9], on window of 32ms (4ms 

shift). First we apply FF with different thresholds on 

spectrum image of normalized (min max) MFCC 

coefficients, but we get an unsatisfactory error score. This is 

because we do not code the harmonic of energy that exists 

in the high frequency subbands. This energy allows the 

discrimination of vowel patterns.  

Thus we propose here a new extraction pattern algorithm 

(called UFF), based on FF algorithm.  

In UFF algorithm we apply FF algorithm in each 

subbands in order to code the complete harmonic of energy 

exist in speech signal. 

The extraction algorithm UFF of our binary pattern (called 

FFMFCC), proceeds as follow: 

1. Select the maximum value of intensity on the LBW: 

the first maximum is the starting point S0 (S0 like defined in 

Fig.1). 

2. Calculate the initial points 6] [1,  i/(Si) ∈ : for each pair 

of LBW subands, the initial point is the maximum value that 

is on the same segment as the first starting point S0. 

3. Calculate the threshold for each pair subands iTh : 

which is the value of the first starting point iS divided by n. 

In our experiments, we tried different n values, with n = 64 

we had the best result. 

4. Apply FF algorithm on LBW with  Thi) (Si,  

parameters, in order to generate the six patterns over the 

LBW. 

5. The final pattern FFMFCC is the logical fusion of all 

the patterns obtained.  

 

Samples of FFMFCC are given in Fig.3, for 

LBW=128ms and LBW=16ms (half shift). 

 

 

 

 

Fig. 2.  Pattern extraction by Flood Fill algorithm [1]:  (a) Speech signal of 

one vowel. (b) The voicing level by subands. (c) The pattern detection used 

Flood Fill algorithm with threshold = 0,7 (d) same as (c) with threshold = 

0,4.  

Fig 1. Illustration of the flood-fill procedure. The original image is shown 

in the left panel. Moving right: a seed S0 is chosen; the neighbors 

according to given criterion as the cell or pixel intensity to the seed are 

filled; then the neighbors to the neighbors are filled; so on until all 

connected points have been added to the stack [13]. 
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IV. ALLEN INTERVAL ALGEBRA VOCALIC CODING 

As FFMFCC naturally defines intervals, we code their 

relations as proposed in [4] using the Allen temporal 

algebra [2] depicted in Fig.4. We apply Allen’s algebra to 

each couple (k,l) of the 12 FFMFCC subbands, where: 

 k 12], :[k   l and 12] : [1 k ∈∈ different of l. Thus the Allen 

FFMFCC vector is defined as: [Allen(Sb1, Sb2),Allen(Sb1, 

Sb3)...Allen(Sb11, Sb12)], resulting in 66 integers. We 

concatenate it with the log energy and call it AllenMFCC. It 

feeds a Multi-Layer Perceptron (TORCH [11]). The hyper 

parameters are optimized on dev. set. Considering 

LBW=16ms, the MLP MFCC inputs consist in 39 floats * 4, 

which equals to 156 real, 1248 bits. For the same kind of 

window, the MLP AllenMFCC inputs are only 66 integers + 

1 real (= energy mean), 272 bits. Therefore the coding rate 

compression is ≈ 5. 

 

 

 

 

 

 

 

Fig. 3.  FFMFCC samples of the phoneme /Eu/, inside three different triphone sequences, for 2 different spectrum image of LBW window size: 

128ms (top) or 16ms (bottom). (A): the MFCC values, in which UFF generates the FFMCFC represented in (B). The (C) and (D) represent two 

other FFMFCC vowel examples. Into the top subfigures, we plot in dashed lignes the forced Viterbi label of the /Eu/ phoneme and in full lines 

the 16ms LBW window. Each bottom subfigure in B,C,D, represents the FFMFCC computed by UFF inside the 16ms window figured in the 

upper respective figure. This short time FFMFCC is similar to each others, and represents the centre of the vowel /Eu/. 

 
Fig.4. The Allen algebra with their symbols. There are 6 relations + their 

inverse (+7) + the “equal” (7) and the “no-relation” (14). 
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V. RESULTS ON VOWEL CLASSIFICATION 

Experiments are made on one hour of francophone 

broadcast news continuous speech (with half women and 

half men) from ESTER campaign [8].  

We use the vowel labels for the training step, which are 

given from forced Viterbi realignment [8] according to LIA 

SPEERAL system [10]. Each LBW is labeled with the label 

that overlaps it the most. In dev. or test phase, we use one 

hour of ESTER broadcast news. We consider the six most 

frequent French vowels: /Aa/,/Ai/,/An/,/Ei/,/Eu/,/Ii/.  

 

The expected ER of the random classifier is defined by  

                     (1) 

where c is the number of classes, card(Ck) is the number 

of elements of the vowel  class Ck in the train set. 

The Error Rate (ER) of the random classifier is 83% ER. 

 

A. Vowel recognition from Voicing data 

    Vowel) ngard(ExistiPattern)/C tedCard(Detec Nbpat =  (2) 

 

We apply FF on spectrum image of voicing levels 

parameters (Fig.2-(c,d)) (for more details for voicing levels 

parameters  see [1]) . We note that the vowel class error rate 

is high (~70% error rate, Fig.5) but this model needs few 

parameters, and detects more enough patterns. Then we 

change parameters to MFCCs coefficients.  

 

 

B. Vowel recognition from MFCCs coefficients 

 

We apply FF with different thresholds on normalized 

(min max) 12 subbands MFCC images, we get an interesting 

result (42% error rate) but with a low nbpat (27%). Thus we 

apply UFF on MFCCs coefficients. The parameters n, and 

LBW length, are set with the validation set, thus n = 64. We 

plot in Fig. 6 the class error for various LBW.  

 

The minimal ER (42%) is at LBW=16ms (half shifted). 

Interestingly, the nbpat (see (2)) nearly equals 100%. Thus 

we can assume that the correct time scale for vowel 

AllenMFCC coding is 16ms. Actually, at larger time scale, 

the pattern is much more complex because of the 

association before and after the vowel center with other 

phonemes, as shown in Fig. 3.  

The table 1 shows that AllenMFCC is compressing by 

five the usual 39 MFCC subbands, with a coding rate of 16 

kb/s (against 76 kb/s for 39 MFCC subbands). 

Unfortunately, the vowels recognition is affected, with more 

than 40% ER against 27% ER for MFCC.  

We note that in Fig. 3, there is a difference between the 3 

FFMFCC patterns on 128 ms LBW. However, we observe 

stable patterns for the same 3 examples of /Eu/.  

The Fig.7 represents the AllenMFCC relations histogram. 

We see that the vowels signal generates only two Allen 

relations:”equal” and”no-relation”. This suggests that 

simple binary coding of the 16ms AllenMFCC may 

represent the vocalic center. This is related to the fact that 

vowel production is synchronous in all MFCC subbands. 

We investigate this point in the next section. 

 

 

 

 

 

Fig. 5.  Train, dev and test error rate and nbpat (nbpat: detected pattern 

number / exists pattern number) with different threshold for 1hour of 

INTER_FM radio broadcast with FF on voicing data. 

  

Fig. 6.  Error rate curves using the Allen temporal coding on FFMFCC 

(”AllenMFCC”), on train, dev. and test set, with different LBW window 

length (half shifted), where is applied the FF on the 12MFCC (with n=4) 

to produce the FFMFCC. It demonstrates that the optimal LBW=16ms.  

Nbpat ≈ 98% for all LBW sizes. 
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VI. RESULTS ON BOOLEAN VOCALIC CENTER CODING 

According to the previous results and the stationary 

nature of vowel, we quantify FFMFCC patterns, for n=64 

and LBW=16ms, with a simple 12 Booleans vector, called 

BoolMFCC, where in each subbands, any interval longer 

than 8ms is set to 1, otherwise to 0. Results (Tab. 1) show 

that BoolMFCC requires only 1.2 kbit/s, without affecting 

ER as we get similar ER than AllenMFCC (43%).  

 In Fig.8, we note that the average curves for MFCC and 

FFMFCC parameters for each vowel are correlated, such 

that the same subbands represent the same vowel. But with 

more contrast for FFMFCC, because UFF algorithm reduces 

noise in MFCC coefficients. It extracts just the structure 

pattern that represents the vowel. This proves that the UFF 

algorithm reveals informative structures speech 

singularities.  This structures speech singularities of each 

vowel, allowing more efficient vowels classification.  

Finally, on can assume that ER difference between 

MFCC and BoolMFCC may be due to the fact that 

BoolMFCC is only coding the vocalic center, while the 

automatic segmentation provides large vocalic context. 

Thus we propose to estimate the whole vowel window by 

the average of the contiguous MLP outputs, over a 32ms 

mid-term context. This smooth estimator, called 

means(BoolMFCC) is more precise than local BoolMFCC, 

yielding to the same vowels coding performance than 

MFCC (27% error rate), but with a very interesting rate 

coding compression (by a factor of 60). Moreover we can 

see from the confusion matrices (Fig 9) that MFCC and 

mean(BoolMFCC) produce similar errors.  

VII. DISCUSSIONS AND CONCLUSION 

Three contributions are made in this paper. The first is 

the investigation of the image based vowels representation 

by the simple FF algorithm, which is successfully fused with 

speech processing. Our approach is very simple and thus 

contrasts with the statistical image process for spectrum 

analysis proposed in [6], recently applied into speech coder 

in [5]. Thus it will be interesting to investigate our 

FFMFCC parameters for speech coder.  

The second contribution is the definition, implementation 

and validation of BoolMFCC feature for vowel 

classification. We show that, Mean(BoolMFCC) features 

generate a similar vowel error rate on broadcast news than 

the state of the art MFCC feature, but with a much lower 

coding rate (1.2 Kb/sec instead of 23 Kb/sec of 12 MFCCs). 

Finally, BoolMFCC has another advantage: it is coding, 

and thus detects the vowel center inside short-term 

windows. Thus, BoolMFCC could be used for automatic 

resynchronization of labels. We see clearly in Fig. 3 the 

stable FFMFCC pattern of the vowel center (between the 

two vertical full lines), which represents the intrinsic vowel 

information, inside the global vowel segmentation produced 

by the forced Viterbi (between vertical dashed lines). This 

vocalic center detection could be used of more efficient 

vowel recognition. We are currently conducting research to 

generalize our approach to diphone Consonant Vowel (CV), 

and triphones (CVC) modeling, also we are considering the 

use of the local binary pattern ULBP [12]. From the 

phonological point of view, we may analyse our framework 

within the quantal speech theory [14]. We expect that our 

binary speech dynamics BoolMFCC coding may point to a 

promising research field for robust automatic speech 

recognition, or speaker recognition, as long as it seems to 

extract simple low bit rate, but informative speech 

singularities. 

 

Fig. 8. Average curve of 12 subbands of MFCC and FFMFCC features in 

LBW lenght =16ms, and n=64, for each vowel. 

Fig 7. The AllenMFCC relations histogram, averaged on the 6 vowels of 1 

hour of broadcast news (ESTER), for optimal parameters n=64 and 

LBW=16ms. Only 2 relations are present: ”Equal” (7) and ”Empty” or 

”NoRelation” (14). 

TABLE I 

CLASS ERROR RATES OF ALL SYSTEMS 

class  error rate Type 

of  Features 

Baud 

(kb/s) 

# 

dim 

CR 

dev 

(%) 

test 

(%) 

full MFCC (39dim) 76 39f*4 1 24 27 

static 12 MFCC 23 12f*4 3 26 29 

AllenMFCC 16 66i+1f 5 45 46 

BoolMFCC 1,2 12b+1f 63 42 43 

Mean(BoolMFCC) 1,2 12b+1f 63 - 28 

 

The vowel class error rate (ER) of the random vowel classifier is 83% 

(calculated by (1)). #dim : dimension number where (b:boolean, i:integer, 

f:float). CR: Compression Rate = dimension ratio against the 39MFCC. 

Mean FFMFCC: vowel estimation by average on 32ms window, 

integrating 4 contiguous MLP outputs of 16ms windows. “-“ we 

calculated Mean(FFMFCC) on the test set only.  
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Our approach follows also the ULBP framework [12]. 

We propose in future work to use binary speech dynamics 

FFMFCC coding for a direct matching of words in a signal 

audio. This method may be useful for information retrieval 

in Broadcast news. 
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Fig 9. Confusion matrices of MFCC and mean(FFMFCC) systems. The 

two systems are producing nearly the same kind of confusions, even if the 

last one is based on speech representation which is 60 times lighter. 


